Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 192: 110580, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36462301

ABSTRACT

Significant research is being conducted on new materials suitable for dosimetry in recent decades with particular focus on their luminescent properties. For instance, a new ceramic detector, aluminum oxide 520 (ALOX-520), was developed at CDTN in 2011 using the sol-gel method. The detectors were doped with C, Fe, Mg, Ca, Cr, Ni, and Mo impurities that generated the necessary dosimetric trap levels to enhance the luminescence effects. Consequently, the resultant material was appropriate for the quantification of ionizing radiation fields by both thermally and optically stimulated luminescence techniques. Originally, ALOX 520 was sintered at 2023 K under a highly reducing atmosphere. At the end of this process, it exhibited important dosimetric properties, as already described in existing literature. The objective of this study is to conduct tests at higher temperatures in vacuum to investigate the effect of thermal treatments under these conditions on the structural and dosimetric properties of the material. Accordingly, ALOX-520 was re-sintered at high temperatures and the changes in its physical, morphological, and dosimetric properties were analyzed. ALOX 520T exhibited better dosimetric properties in terms of homogeneity, reproducibility, linearity, and signal fading. Physically, an increase in the detection threshold value of ALOX-520T could be linked to a decrease in the sensitivity of this detector. The energy dependence, the thermal quenching correction, and kinetic studies for ALOX-520T conducted as part of this work are original. However, the obtained results are consistent with those reported in the literature for α-Al2O3 ceramic detectors. XRD and XRF analyses demonstrated that the thermal treatment did not change the crystalline structure or composition of the material. All the results indicate that an appropriate thermal treatment could improve the dosimetric properties of the ALOX-520 detector without causing significant changes in its crystalline structure.


Subject(s)
Aluminum Oxide , Radiometry , Aluminum Oxide/chemistry , Reproducibility of Results , Kinetics , Luminescent Measurements , Thermoluminescent Dosimetry/methods
2.
Appl Radiat Isot ; 74: 26-30, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23353089

ABSTRACT

The development of new medical devices possess a number of challenges, including designing, constructing, and assaying prototypes. In the case of new brachytherapy seeds, this is also true. In this paper, a methodology for rapid dosimetric characterization of (125)I brachytherapy seeds during the early stages of their development is introduced. The characterization methodology is based on the joint use of radiochromic and personal monitoring photographic films in order to determine the planar anisotropy due to the radiation field produced by the seed under development, by means of isodose curves. To evaluate and validate the process, isodose curves were obtained with both types of films after irradiation with a commercial (125)I brachytherapy seed.


Subject(s)
Brachytherapy/methods , Anisotropy , Brachytherapy/instrumentation , Film Dosimetry/methods , Film Dosimetry/statistics & numerical data , Humans , Iodine Radioisotopes/therapeutic use , Radiometry/methods , Radiometry/statistics & numerical data , Radiotherapy Dosage
3.
Appl Radiat Isot ; 71 Suppl: 52-6, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22917942

ABSTRACT

The feasibility of using radiochromic films to verify the metrological coherence among standard beta radiation fields was evaluated. Exercises were done between two Brazilian metrology laboratories in beta fields from (90)Sr/(90)Y, (85)Kr and (147)Pm radiation sources. Results showed that the radiochromic film was useful for field mapping aiming uniformity and alignment verification and it was not reliable for absorbed dose measurements only for (147)Pm beta field.


Subject(s)
Beta Particles , Film Dosimetry/methods , Calibration , Feasibility Studies , Krypton Radioisotopes , Promethium , Strontium Radioisotopes , Yttrium Radioisotopes
4.
Appl Opt ; 39(16): 2695-704, 2000 Jun 01.
Article in English | MEDLINE | ID: mdl-18345191

ABSTRACT

A new optical element that displays singular polarization eigenstates is proposed. It consists of a planar stratified structure composed of alternate gyrotropic and birefringent layers. The orthogonality of the polarization eigenstates is lost because of anisotropic reflections at the interfaces, which are enhanced by the special condition chosen for the multiple-beam interference. First we show that the anisotropic reflection at the interface between the layers with linear and circular symmetries does produce strong enough dichroism to break the orthogonality of polarization eigenstates. Second, we investigate the behavior of these eigenstates with respect to their linearity and orthogonality as a function of the width of the layers. Our results concretely demonstrate that it is possible to control the effective optical parameters of such stratified structures by adjusting the thickness of each anisotropic layer. Finally, we obtain the necessary conditions for designing a double-layer system with singular eigenstates of linear polarization.

SELECTION OF CITATIONS
SEARCH DETAIL
...